2,947 research outputs found

    A constructive proof of the general Lovasz Local Lemma

    Full text link
    The Lovasz Local Lemma [EL75] is a powerful tool to non-constructively prove the existence of combinatorial objects meeting a prescribed collection of criteria. In his breakthrough paper [Bec91], Beck demonstrated that a constructive variant can be given under certain more restrictive conditions. Simplifications of his procedure and relaxations of its restrictions were subsequently exhibited in several publications [Alo91, MR98, CS00, Mos06, Sri08, Mos08]. In [Mos09], a constructive proof was presented that works under negligible restrictions, formulated in terms of the Bounded Occurrence Satisfiability problem. In the present paper, we reformulate and improve upon these findings so as to directly apply to almost all known applications of the general Local Lemma.Comment: 8 page

    Simulation of a new Pressure Swing Batch Distillation System

    Get PDF
    The operation and performance of a new pressure swing batch distillation configuration is investigated by rigorous simulation calculations. A maximum boiling point azeotrope is separated in a double column batch rectifier. We study the influence of the main operational parameters and determine the optimal value of these parameters. The calculation results are presented for the mixture water (A) – ethylene-diamine (B)

    Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals

    Get PDF
    Two different methods of diffraction profile analysis are presented. In the first, the breadths and the first few Fourier coefficients of diffraction profiles are analysed by modified Williamson-Hall and Warren-Averbach procedures. A simple and pragmatic method is suggested to determine the crystallite size distribution in the presence of strain. In the second, the Fourier coefficients of the measured physical profiles are fitted by Fourier coefficients of well established ab initio functions of size and strain profiles. In both procedures, strain anisotropy is rationalized by the dislocation model of the mean square strain. The procedures are applied and tested on a nanocrystalline powder of silicon nitride and a severely plastically deformed bulk copper specimen. The X-ray crystallite size distributions are compared with size distributions obtained from transmission electron microscopy (TEM) micrographs. There is good agreement between X-ray and TEM data for nanocrystalline loose powders. In bulk materials, a deeper insight into the microstructure is needed to correlate the X-ray and TEM results

    Shortest path discovery of complex networks

    Get PDF
    In this paper we present an analytic study of sampled networks in the case of some important shortest-path sampling models. We present analytic formulas for the probability of edge discovery in the case of an evolving and a static network model. We also show that the number of discovered edges in a finite network scales much slower than predicted by earlier mean field models. Finally, we calculate the degree distribution of sampled networks, and we demonstrate that they are analogous to a destructed network obtained by randomly removing edges from the original network.Comment: 10 pages, 4 figure

    Explaining the elongated shape of 'Oumuamua by the Eikonal abrasion model

    Get PDF
    The photometry of the minor body with extrasolar origin (1I/2017 U1) 'Oumuamua revealed an unprecedented shape: Meech et al. (2017) reported a shape elongation b/a close to 1/10, which calls for theoretical explanation. Here we show that the abrasion of a primordial asteroid by a huge number of tiny particles ultimately leads to such elongated shape. The model (called the Eikonal equation) predicting this outcome was already suggested in Domokos et al. (2009) to play an important role in the evolution of asteroid shapes.Comment: Accepted by the Research Notes of the AA
    • 

    corecore